

Coronagraphy with AFTA-WFIRST

N. Jeremy Kasdin
Princeton University

Bruce Macintosh, Wes Traub, Dmitry Savransky, Mark Marley, Tom Greene, Gary Blackwood, Feng Zhao, Stuart Shaklan, Olivier Guyo

AFTA Telescope

- 2.4 m
- Inclined geosynchronous orbit
- 5 year mission
- Wide-field near-IR imager
- Coronagraphic imager&IFS
- Pupil:

Figure 3-4: The telescope components without the outer barrel assembly.

AFTA Coronagraph Goals

- 1) Measure and understand the composition and nature of a diverse sample of extrasolar planets orbiting nearby stars
- 2) Illuminate the process through which planetary systems form
- 3) Determine which stars have dusty remnant or debris disks, measure their disk properties, and observe how their disks and planets interact
- 4) Determine which systems (statistically or individually) in the solar neighborhood are suitable targets for future terrestrial-planet characterization
- 5) Demonstrate and validate coronagraph technology useable for a future habitable-planet-detecting mission

AFTA exoplanet science objectives

- 1) Survey 200 nearby stars including both those with known extrasolar planets and those for which no constraints will exist (e.g. A stars) spanning the range of spectral types
- 2) Characterize a significant sample (10-20) of giant planets in broadband reflected-light photometry with an accuracy of 0.03 in albedo, spanning a ~5 bands that are sensitive from Rayleigh scattering to methane absorption
- 3) Spectroscopically characterize a subset (6-10) of giant planets spanning a range of irradiances and determine the depth of methane, water, and other features
 - Detect a sample (~2-4) of planets of less than 3 RE in broadband photometry of at least 3 bands with an accuracy of 0.05 in albedo
- 4) Characterize the orbital semi-major-axis (within 20%) and eccentricity (within 0.2) of these planets, in conjunction with Doppler or astrometric measurements

Planets within 30 pc

R~70 spectra can determine planet properties

Disk Science

- 7) Search for low surface density circumstellar disks around a sample of several dozen nearby stars.
- 8) Measure the location, surface density and extents of dust particles around nearby stars from habitable zones to beyond ice lines to understand delivery of materials to inner solar systems
- 9) Constrain dust grain compositions and sizes
- 10)Detect and measure substructures within dusty debris that can be used to understand the locations of parent bodies (asteroids, comets) and influences of seen and unseen planets
- 11)Identify what nearby stars have zodiacal dust levels indicating they may be poor candidates for future terrestrial planet imaging
- 12)Understand the time evolution of circumstellar disk properties around a broad star sample

AFTA Coronagraph Instrument

Bandpass	430 – 980nm	Measured sequentially in five ~10% bands	
Inner working angle	100 – 250 mas	~3λ/D, driven by science	
Outer working angle	0.75 – 1.8 arcsec	By 48X48 DM	
Detection Limit	Contrast ≤ 10 ⁻⁹ After post processing)	Cold Jupiters, Neptunes, down to ~2 RE	
Spectral Res.	~70	With IFS, R~70 across 600 - 980 nm	
IFS Spatial Sampling	17mas	Nyqust for λ~430nm	

Primary Architecture: Occulting Mask Coronagraph = Shaped Pupil + Hybrid Lyot

- SP and HL masks share very similar optical layouts
- Small increase in over all complexity compared with single mask implementation

A backup architecture using a higher performing Phase Induced Amplitude Apodization (PIAA) coronagraph is also being studied.

Instrument Layout within the Allocated Envelope

Science modeling (Wes Traub)

- Science yield modeling focusing on ability to study Doppler planets
- Contrast curves generated from John Krist PROPER models
 - Very dependent on telescope jitter assumptions
 - Recent SPOT modeling shows jitter < 0.4 marcsec rms
- Model residual speckle noise, photon noise from halo, photon noise from foreground and background zodiacal light, detector noise sources
- Significant uncertainty in removal of speckles through postprocessing and PSF subtraction

Contrast vs Angle from Star Current best estimate jitter & post-processing factor

Contrast floors here are upper limit for long exposure/very bright star

Contrast vs Angle from Star Goal jitter & post-processing factor

Contrast floors here are upper limit for long exposure/very bright star

AFTA RV Exoplanet Detection Estimates

 RV exoplanet detections are estimated based on imaging of radial velocity planets from the current RV catalog

Configuration	Design	Inner working angle	# RV planets, 550nm band, 6-month campaign	# spectral bands per target, 6-month campaign
Prime	SP	0.19	4	4.3
(OMC:			7	4.9
Occulting	HL	0.10	18	4.3
Mask Coron.)			19	4.2
Backup	PIAA	0.09	23	3.2
			30	4.3

Note 1. Two rows for contrast and # RV images columns are for cases of

- Current Best Estimate: 0.4 mas RMS jitter & 1 mas star, 10x post-processing factor (slide 4)

- Goal: 0.2 mas RMS jitter & 1 mas star, 30x post-processing factor (slide 5)

Note 2. Spectral bands are 10% wide, centered at 450, 550, 650, 800, 950 nm

Future science tasks

- Evaluate spectroscopic capabilities of new designs
 - Requires coronagraph modeling at 800 nm
- Evaluate capabilities for 1-4 RE planets
- Assess Doppler completeness of likely target sample
- Additional integrated modeling of coronagraph
- Assess likely disk imaging science using refined coronagraphic capabilities and integrated simulations
- Evaluate speckle removal requirements and capabilities
- Develop mission scenarios

Coronagraph technology development

- Finalize designs for testing
- Manufacture masks and stops Winter/Spring 2014
- Begin HCIT vacuum facility testing Spring/Summer 2014
- Perform static wavefront control tests followed by dynamic tests with jitter through Summer 2016.
- Goal of TRL 5 by October, 2016.

Conclusions

AFTA-WFIRST with a coronagraph will be the first high-contrast, small inner working angle instrument in space with wavefront correction capability. It is an important first step to a future large mission capable of detecting and characterizing Earth-size rocky planets in the habitable zone of nearby stars.

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

© 2013. All rights reserved.

